Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus

TitleChicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus
Publication TypeJournal Article
Year of Publication2013
AuthorsKeller, G, Khozyem, H, Adatte, T, Malarkodi, N, Spangenberg, J, Stinnesbeck, W
JournalGeological Magazine
Volume150
Issue05
Pagination885 - 907
Date Published01/2013
ISSN0016-7568
KeywordsChicxulub, impact spherules, KTB unconformity, North Atlantic
Abstract

The Chicxulub impact is commonly believed to have caused the Cretaceous-Tertiary boundary (KTB) mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean KTB sequences based on high-resolution biostratigraphy, quantitative faunal analyses and stable isotopes. Results reveal a major KTB unconformity spans most of Danian subzone P1a(1) and Maastrichtian zones CF1-CF2 (~400 kyr) in the NW Atlantic Bass River core, ODP Sites 1049A, 1049C and 1050C. In the Caribbean ODP Sites 999B and 1001B the unconformity spans from the early Danian zone P1a(1) through zones CF1-CF4  (~3 myr). Only in the Demerara Rise ODP Site 1259B is erosion relatively minor and restricted to the earliest Danian zone P0 and most of subzone P1a(1) (~150 kyr). In all sites examined Chicxulub impact spherules are apparently reworked into the early Danian subzone P1a(1) about 150-200 kyr after the mass extinction. A similar pattern of erosion and redeposition of impact spherules in Danian sediments has previously been documented from Cuba, Haiti, Belize, Guatemala, south and central Mexico. This pattern can be explained by intensified Gulf stream circulation at times of climate cooling and sea level changes. The age of the Chicxulub impact cannot be determined from these reworked impact spherule layers, but can be evaluated based on the stratigraphically oldest spherule layer in NE Mexico and Texas, which indicates this impact predates the KTB by about 130-150 kyr.  PDF

URLhttp://www.journals.cambridge.org/abstract_S0016756812001069
DOI10.1017/S0016756812001069
Short TitleGeol. Mag.